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Abstract

Knowledge of someone’s friendships can powerfully impact how one interacts with them. Previous research suggests that informa-
tion about others’ real-world social network positions—e.g. how well-connected they are (centrality), ‘degrees of separation’ (relative 
social distance)—is spontaneously encoded when encountering familiar individuals. However, many types of information covary with 
where someone sits in a social network. For instance, strangers’ face-based trait impressions are associated with their social network 
centrality, and social distance and centrality are inherently intertwined with familiarity, interpersonal similarity and memories. To 
disentangle the encoding of the social network position from other social information, participants learned a novel social network in 
which the social network position was decoupled from other factors and then saw each person’s image during functional magnetic 
resonance imaging scanning. Using representational similarity analysis, we found that social network centrality was robustly encoded 
in regions associated with visual attention and mentalizing. Thus, even when considering a social network in which one is not included 
and where centrality is unlinked from perceptual and experience-based features to which it is inextricably tied in naturalistic contexts, 
the brain encodes information about others’ importance in that network, likely shaping future perceptions of and interactions with 
those individuals.
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Introduction
When encountering a stranger, the human brain spontaneously 
encodes specific pieces of information about that person. Infor-
mation related to inferences of trustworthiness, dominance and 
other socially relevant characteristics based on facial features 
is encoded in a set of regions associated with social cogni-
tive processes, often referred to as the default mode network 
(e.g. Winston et al., 2002; Engell et al., 2007; Gobbini and Haxby, 
2007; Wagner et al., 2012; Parkinson et al., 2017; Cao et al., 2020; 
Su et al., 2021). Recent evidence suggests that people also encode 
where familiar others sit in their broader social networks, even 
when there is no task directing their attention to this information 
(Zerubavel et al., 2015; Parkinson et al., 2017; Peer et al., 2021). Such 
evidence stems from functional magnetic resonance imaging 
(fMRI) studies on real-world social networks in which participants 
viewed images of their fellow network members (e.g. members 
of the same community). Brain regions associated with mental-
izing and attentional allocation encoded how well-connected, or 

central, the individual was in the participant’s own social net-
work (Zerubavel et al., 2015; Parkinson et al., 2017). Additionally, 
brain regions implicated in encoding spatial and abstract dis-
tances encoded how proximal perceived individuals were in the 
network (friends, friends-of-friends, friends-of-friends-of-friends, 
etc.), either to the participant or to each other (Parkinson et al., 
2017; Peer et al., 2021). Thus, the human brain appears to prioritize 
information about familiar others’ positions in one’s real-world 
social networks and spontaneously retrieves this information 
when encountering them.

There are many confounding pieces of information, however, 
that are inextricably tied to where people sit in their social net-
works. Indeed, when encountering familiar friends, there is a 
plethora of information immediately available, including per-
sonal history, personality and shared experiences, all of which 
are inherently linked with that person’s social network posi-
tion. For instance, people who are exceptionally well-connected 
(e.g. people who have many friends or, in other words, are high 
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in ‘degree centrality’) will likely be seen at more social gather-
ings and be discussed more frequently and thus become more 
visually and socially familiar. Furthermore, people are not ran-
domly assigned to positions in their real-world social networks, 
and thus, there are a variety of factors that may lead individuals 
to hold their respective places (e.g. more extraverted individuals 
are likely to have more connections). Recent evidence suggests 
that, even without first-hand experience with others or knowledge 
of their personalities, face-based trait impressions (e.g. appar-
ent trustworthiness, warmth and attractiveness) are associated 
with actual and perceived social network centrality (Alt et al., 
2022). That is, naïve observers were able to accurately identify 
characteristics of others’ social network positions based solely 
on their facial features. Furthermore, observers’ impressions of 
targets’ personality traits (again based only on facial features) 
were linked to where those targets sat in their social network. 
Thus, familiarity, person knowledge, shared experiences and 
physical features may systematically covary with real-world net-
work position characteristics, such as relative social distance and 
social network centrality. Given these potentially confounding 
factors in real-world social networks, it is difficult to determine 
if perceivers truly spontaneously encode knowledge of others’ 
social network positions when encountering them, rather than 
features that covary with where someone sits in their social
network.

Additionally, it is unknown how context shapes the encoding 
of information related to where people sit in their social network. 
Different aspects of this information may be more relevant in 
one context and less so in another. For instance, if the goal is to 
spread information about an event as quickly as possible, then 
one would likely seek out the most well-connected individuals 
who are able to efficiently disseminate the message to as many 
people as possible. On the other hand, when planning a wedding 
seating chart, one needs to consider how closely people are con-
nected so that individuals who are nearer to each other in the 
couple’s social network will be seated together (e.g. a table for 
a bride’s college friends and another for her partner’s cousins). 
In the first scenario, an individual’s number of connections, or 
degree centrality (one measure of how well-connected an individ-
ual is in a network), is particularly relevant, while in the second, 
the geodesic distance between two people (i.e. the number of 
steps between them in the network) is more relevant. Does this 
contextual relevancy affect how the mind encodes their social 
network position when encountering them? It is possible that 
certain brain regions incorporate the relevancy of information to 
the current situation and encode information like degree central-
ity to a greater extent when it is relevant than when it is not. 
We can thus examine neural patterns elicited by others to shed 
light on if and where social network information is encoded, as 
well as how the mind integrates situational factors with person
knowledge.

In the current experiment, we taught participants a novel 
network structure and used fMRI to measure the neural encod-
ing of others’ social network positions in this network. This 
allowed us to examine the encoding of social network knowl-
edge decoupled from other potential confounding factors that 
are inherently linked to social network characteristics in real-
world contexts. We also systematically varied the contextual 
relevance of two different facets of others’ network positions: 
how many friends someone has (degree centrality) and how 
close people are to one another in the network (relative geodesic 
distance). Network members (represented by their names and 
faces) were randomly assigned to positions in a learned social 

network across participants. In doing so, we were able to dis-
sociate social network position characteristics from confounding 
variables that exist in real-world social networks and to dissoci-
ate degree centrality from the relative geodesic distance. Finally, 
by using a novel network that participants were not a part of, 
we were able to test if the brain encodes allocentric (distance 
between two others) rather than egocentric (distance from one-
self) social distance, further isolating social network knowledge 
from potential feelings of affiliation or preferences for individuals 
closer to oneself. Through this controlled paradigm, we were able 
to empirically test if the human brain encodes various aspects 
of the social network position over and above other aspects 
of person knowledge, social experiences, familiarity and facial 
features and to explore how contextual relevancy shapes this
encoding.

Methods
Participants
Participants were recruited from the University of California, Los 
Angeles (UCLA) campus via flyers and were required to be fluent 
in spoken and written English, 18 to 35 years old, right-handed 
and have no metal in their body. Additionally, participants had 
to sufficiently learn a social network during session 1 to be eli-
gible for the fMRI session. To reach our target sample size of 30 
(determined a priori), we recruited 78 participants for session 1, 31 
of whom passed (see the Procedure section) and participated in 
session 2. One subject was excluded due to technical issues with 
the projection system in the scanner. As such, our final sample 
size was 30 (13 females, 17 males; ages 18–35 years, M = 21.27, 
standard deviation = 3.33). Participants were paid $15/hour for 
session 1 and $20/hour for session 2. All recruited participants 
were consented in accordance with UCLA Institutional Review 
Board requirements.

Procedure
The study was completed in two sessions, one to six days 
apart. In session 1, participants learned two aspects of a friend-
ship network consisting of 13 friendships among 10 individuals. 
Specifically, they learned how many friends each individual had 
(i.e. their degree centrality; Figure 1B) and who was friends with 
whom (Figure 1A). We then evaluated their knowledge. If partic-
ipants failed to recall each individual’s degree and friendships 
with 100% accuracy (Figure 1C) or were less than 70% accurate 
in their drawing of the network (Figure 1D), then they did not 
pass the evaluation task, their participation was terminated, and 
they were paid for their participation. If they did pass the eval-
uation task, then they completed a practice version of the task 
they would complete in the scanner (Figure 1E), which required 
at least 80% accuracy to be eligible to participate in the fMRI 
session (session 2). We used strict passing thresholds to ensure 
that participants knew the network well and were able to com-
plete the scanner task. In session 2, participants completed a 
shortened version of the network learning task before enter-
ing the scanner and then completed the fMRI task while in the
scanner.

Each node in the network was represented by an emotionally 
neutral face from the Chicago Face Database (Ma et al., 2015). 
To aid in distinguishing between people, the shirts were colored 
and names were added. Images were randomly assigned to the 
network position across participants. The network was symmet-
ric (Figure 1D) to maximally dissociate degree centrality from the 
relative distance between people.
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Fig. 1. (A and B) Participants learned the social network by viewing each person at the top the screen with their number of friends (degree) and the 
pictures of those friends at the bottom of the screen. Next, they saw the same individual at the top of the screen with everyone who is not their friend 
at the bottom in order to ensure that every person is seen the same number of times. (A) On half of the rounds, participants then saw every pair and 
answered whether or not they were friends. (B) On the other rounds, participants saw each pair and answered whether the person on the right had 
more friends than the person on the left. They were told if they were correct or not immediately following each trial. After eight rounds, they were 
evaluated on their knowledge of the network through two tasks. (C) In the first, they reported how many friends and who those friends were for each 
person, one at a time. (D) In the second task, they drew the network by drawing lines between friends. Participants who knew the network sufficiently 
completed a practice version of the task they would complete in the scanner. (E) In the fMRI task, they saw each person for 1.5 s followed by jittered 
fixation time. Randomly throughout each run were a small number of catch trials that were immediately followed by a second image on a blue screen. 
(F) On half of the runs, participants had to answer if the person on the blue screen had more friends than the last person (centrality condition). On the 
other half of the rounds, participants answered if the two were friends or not (distance condition). Participants who could successfully complete the 
scanner task were scheduled for the fMRI session 1–6 days later.

Session 1
Learning the network structure. Participants learned the two 
social network features (centrality: number of friends; friend-
ship/distance: friends’ identities) in discrete blocks of a learning 
paradigm, which was presented using PsychoPy (Peirce, 2009). Par-
ticipants saw each network member at the top of the screen along 
with how many friends that person had (i.e. their degree cen-
trality) and who those friends were (Figure 1A and B). To avoid 
showing well-connected people more often than people who have 
fewer friends (and thus confounding social network centrality 
with visual familiarity to participants), this was followed by a trial 
showing everyone who is not friends with that person.

Next, participants saw each pair in a randomized order and 
were either asked if the two people were friends with each 
other (friendship blocks; Figure 1A) or if the person on the right 
had more friends than the person on the left (centrality blocks; 
Figure 1B). They were given immediate feedback on whether or 
not they were correct for a minimum of 0.25 s. This was repeated 

over eight rounds that were blocked such that the first half of the 
rounds were of one type and the second half was of the other type, 
counterbalanced across subjects.

Evaluating network learning. To evaluate how well participants 
learned each feature of the network, participants were shown 
each person in the network and asked how many friends they 
had, followed by who those friends were (Figure 1C). To pass, 100% 
accuracy was required. Next, participants were asked to draw the 
full network (Figure 1D). All 10 people were presented, and par-
ticipants drew lines between those they remembered as friends. 
To pass this task, participants needed at least 70% accuracy. They 
were told which ones were wrong (if any) and to fix them before 
continuing.

Practice fMRI task. To ensure that all participants who partic-
ipated in session 2 would be able to do the task in the scanner, 
those who passed the evaluation tasks practiced the fMRI task 
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(presented using PsychoPy) at the end of session 1. During the 
fMRI task, every trial consisted of one network member being 
displayed for 1.5 s followed by 4.5–10.5 s of jittered fixation time. 
Randomly spaced throughout each run were catch trials in which 
a second image on a blue background was shown immediately 
after the first for 1 s (Figure 1E). At the beginning of each run, par-
ticipants were told to answer one of two questions whenever they 
saw a blue background: (i) ‘does this person have more friends 
than the last person?’ or (ii) ‘is this person friends with the last per-
son?’ At the end of each round, participants were told how many 
catch trials they answered correctly, how many they answered 
incorrectly and how many they missed. Participants needed to 
reach 80% accuracy in session 1 to be eligible for session 2.

Session 2
If participants passed all tasks in session 1, they participated in 
session 2 one to six days later. During this session, they completed 
a shortened version of the learning and evaluation tasks described 
above. During the evaluation task, they were given immediate 
feedback on each trial and told to correct their mistake to ensure 
that participants knew the network as well as possible before 
entering the scanner. Participants then completed eight runs of 
the fMRI task in the scanner (approximately one hour). Per run, 
each target person was shown four times as non-catch trials, one 
time as a catch trial (on a blue screen) and one time as the person 
shown immediately before the catch trial. Importantly, catch tri-
als were only used to focus participants’ attention on individuals’ 
relative centrality or distance from others (if they were friends—
i.e. separated by a geodesic distance of 1—or not—i.e. separated 
by a geodesic distance greater than 1). We only analyzed the four 
occurrences of each image that were not part of a catch trial to 
test if people encoded social network information even when they 
were not asked about it directly.

FMRI data acquisition
MRI data were collected on a Siemens 3-Tesla Prisma Fit MRI 
Scanner with a 32-channel head coil. Functional scans were 
obtained using a gradient echo sequence with 64 interleaved slices 
(2.0 mm isotropic voxels, repetition time (TR) = 750 ms, echo time 
(TE) = 35 ms, flip angle = 52∘ and field of view (FOV) = 184 mm). 
Participants used a 2-button response box to make choices dur-
ing the task. For each subject, two echo planar field maps 
were obtained after functional scans began in order to correct 
for the effects of field inhomogeneity. Finally, a T1-weighted 
(T1w) MPRAGE sequence (1 mm isotropic voxels, 208 slices, 
TR = 1900 ms, TE = 2.48 ms, flip angle = 9∘ and FOV = 256 mm) was 
acquired after the field maps.

FMRI analyses
Image preprocessing
Preprocessing was performed using fMRIPrep 1.4.0 (Esteban et al., 
2019), which is based on Nipype 1.2.0 (Gorgolewski et al., 2019). 
The preprocessing descriptions provided here are taken from the 
recommended citation boilerplate text generated by fMRIPrep 
(released under a CC0 license with the intention that researchers 
reuse the text to facilitate clear, consistent descriptions of prepro-
cessing steps, thereby enhancing reproducibility).

Anatomical data preprocessing. The T1w image was corrected 
for intensity nonuniformity with N4BiasFieldCorrection, dis-
tributed with ANTs 2.1.0 (Avants et al., 2008) and used as the 

T1w reference throughout the workflow. The T1w reference was 
skull-stripped with a Nipype implementation of the antsBrainEx-
traction.sh workflow, using OASIS30ANTs as a target template. 
Brain tissue segmentation of cerebrospinal fluid (CSF), white mat-
ter (WM) and gray matter was performed on the brain-extracted 
T1w using fast (Smith et al., 2004). Brain surfaces were recon-
structed using recon-all (FreeSurfer 6.0.0; Dale et al., 1999).

Functional data preprocessing. For each of the eight blood 
oxygen level-dependent (BOLD) runs per subject, the follow-
ing preprocessing was performed. First, a reference volume and 
its skull-stripped version were generated. A deformation field 
to correct for susceptibility distortions was estimated based 
on two echo planar imaging references with opposing phase-
encoding directions, using 3dQwarp in AFNI (Cox, 1996; Cox and 
Hyde, 1997). Based on the estimated susceptibility distortion, an 
unwarped BOLD reference was calculated for a more accurate 
co-registration with the anatomical reference. The BOLD refer-
ence was co-registered to the T1w reference using bbregister in 
FreeSurfer with nine degrees of freedom to account for distortions 
remaining in the BOLD reference. Head motion parameters with 
respect to the BOLD reference (transformation matrices; six cor-
responding rotation and translation parameters) were estimated 
before any spatiotemporal filtering using FSL’s mcflirt (Jenkinson 
et al., 2002). The BOLD time series were resampled onto their 
original, native space by applying a single, composite transform 
to correct for head motion and susceptibility distortions. The 
first six volumes of each scan were removed from data prior to 
subsequent analyses.

First-level analysis
We fit a general linear model within each catch trial condi-
tion (focused on either degree centrality or friendship) of the 
fMRI data using Nistats (Abraham et al., 2014) to estimate the 
BOLD response evoked for each of the 10 nodes in the network 
(represented by different images across participants). The follow-
ing confounding variables were included in the model as nuisance 
regressors: three translational motion parameters, three rota-
tional motion parameters, three global signals extracted within 
the CSF, WM and whole-brain mask. All regressors of interest 
were convolved with a Glover hemodynamic response function. 
The t-statistic maps (i.e. maps of beta coefficients divided by their 
standard error estimates) resulting from these analyses were used 
for subsequent pattern similarity analyses.

Overall encoding of social network position characteristics. We 
tested if and where each facet of the network position was 
encoded throughout the fMRI task, regardless of the condition. 
To do so, we first averaged the t-maps from the two conditions, 
resulting in one overall distributed neural response pattern for 
each target person participants encountered in the study. Using 
a searchlight procedure, we iteratively extracted the multi-voxel 
pattern of t-values evoked by each target person within ‘spheres’ 
(radius = 4 voxels) centered at each voxel. We conducted repre-
sentational similarity analysis (RSA) using these neural response 
patterns (Kriegeskorte et al., 2008), which allowed us to com-
pare neural representations to models based on each facet of the 
social network position (degree centrality and social distance) to 
test if a brain region encoded that particular feature (Figure 2; 
Weaverdyck et al., 2020).

This was achieved through the creation and comparison of 
representational dissimilarity matrices (RDMs). First, we created 
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Fig. 2. Using only the non-catch trials in the fMRI task, patterns of neural activation were extracted for each network member in a searchlight 
procedure. At each searchlight center (i.e. each voxel), the response pattern within a sphere centered on that voxel was extracted for each person seen 
by the participant while in the scanner. The Euclidean distances between each pattern were then calculated and arranged into a RDM in which each 
row and column are associated with a network member and the corresponding cell is the dissimilarity in patterns of activity elicited by those two 
people. This RDM was then Spearman rank–correlated with RDMs representing the difference in network members’ centralities (top right matrix) and 
the distance between people in the network (bottom right matrix). At the group level, we tested where each correlation coefficient (𝜌) at each point in 
the brain (i.e. at each searchlight center) was significantly greater than zero.

the model centrality RDM in which each row and column were 
associated with an individual in the network and the correspond-
ing cell in the matrix was the absolute value of the difference 
in degree centrality between those two individuals (Figure 2, top 
right matrix). Similarly, we created a model distance RDM in 
which each cell represented the geodesic distance between two 
individuals in the network (Figure 2, bottom right matrix).

We then compared these model RDMs with neural RDMs. 
To create the neural RDMs, we calculated the Euclidean dis-
tance between the neural patterns elicited by different nodes. 
The Euclidean distance was used as it reflects differences in 
both overall response magnitudes and in topological response 
patterns between conditions. For results from parallel analyses 
using Pearson correlations, which reflect differences in topolog-
ical response patterns only, see the Supplementary Materials 
(Figure S1 and Tables S1 and S2). That is, each cell of the neural 
RDMs reflected how similar a brain region represented the people 
corresponding to that cell’s row and column. Next, to determine 
the extent to which each facet of social network knowledge was 
encoded (independent of the other), we calculated the Spearman 
rank correlation coefficient, 𝜌, between the lower off-diagonal 
triangles of the neural RDMs and each model RDM (Figure 2). 
(Spearman correlation was used instead of Pearson correlation 
because it does not assume a linear relationship between the 
neural and model RDMs.) In other words, we tested if similar-
ity in neural representations was correlated with similarities in 
degree centrality or proximity in the network. The correlation 
coefficients were then mapped back onto the central voxel of the 
searchlight sphere. The two resulting whole-brain maps demon-
strated the extent to which distributed neural response patterns 
in each region (area surrounding each voxel) reflected the degree 
centrality and the relative social distance of the people being
viewed.

Encoding based on contextual relevancy. How does context 
shape the encoding of this information? To begin to answer this 
question, we conducted the same analysis described above within 
each of the conditions: the centrality condition when participants 
were focused on individuals’ degree centralities, and the dis-
tance condition when participants were focused on individuals’ 

relationships (i.e. their ‘degrees of separation’ from one another). 
To test if degree centrality was encoded more when it was rel-
evant than when it was irrelevant, we subtracted the correla-
tion coefficients between the neural RDMs and the centrality 
model RDM in the irrelevant condition from the relevant condition 
(i.e. centrality-relevant condition > distance-relevant condition). 
We ran the same analysis for distance, testing where the cor-
relation coefficient between the neural RDM and the distance 
model RDM was higher in the relevant condition than in the 
irrelevant condition (i.e. distance-relevant condition > centrality-
relevant condition).

Second-level analysis
All first-level analyses were conducted in participants’ T1w space. 
For group-level analyses, we transformed individuals’ first-level 
maps to The ICBM 152 Nonlinear Asymmetrical template ver-
sion 2009c (Collins et al., 1999; Fonov et al., 2011) space using 
ANTs and the mapping generated by fMRIPrep. All first-level maps 
underwent smoothing (6 mm full width at half maximum Gaus-
sian kernel). To determine where the brain encoded centrality 
or distance at the group level, we ran nonparametric permu-
tation testing (10 000 iterations) using FSL’s randomise function 
(Winkler et al., 2014) within a 5-mm-dilated brain mask, with 
10-mm variance smoothing. Results underwent threshold-free 
cluster enhancement (TFCE) (Smith and Nichols, 2009) to correct 
for multiple comparisons.

Parcellation analyses
In addition to the whole-brain searchlight analyses described 
above, we ran the same analyses in each parcel of the 200-region 
Schaefer parcellation (Schaefer et al., 2018) to test for conver-
gence. We conducted both searchlight and parcellation analyses 
because the searchlight approach provides continuous statistical 
maps of social network encoding, but defines regions as artificial 
spheres that are unlikely to resemble the size or shape of func-
tionally or anatomically defined brain regions, which could lead, 
for example, to collapsing response patterns across function-
ally distinct areas. The parcellation approach, however, results 
in a coarser map of encoding, but defines regions based on 
their functional response profiles (or anatomy, depending on the 
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Fig. 3. Regions that showed significant encoding of degree centrality across conditions as measured by correlations between neural RDMs and the 
degree centrality RDM. (A) Results using a searchlight procedure with a four-voxel radius. All p-values from searchlight-based analyses were corrected 
for multiple comparisons using TFCE. (B) Results using the 200-region Schaefer parcellation. All p-values from parcellation-based analyses were 
FDR-corrected for multiple comparisons. Only regions that surpass a corrected threshold of p < .05 are shown.

Table 1. Searchlight clusters that encoded degree centrality

General region N voxels Peak t-value Peak coordinates (x, y, z) Center of gravity (x, y, z)

Posterior lateral temporal cortex, posterior parietal 
cortex, and occipital cortex

36 194 5.36 (63.5, −28.5, −8.5) (−4. 3, −56, 34.9)

Left dorsolateral prefrontal cortex 865 4.12 (−38.5, 15.5, 59.5) (−44.9, 12.1, 50.6)
Left dorsomedial prefrontal cortex 128 3.64 (−4.5, 11.5, 61.5) (−3.67, 9.64, 61.4)

Note. Significant clusters from the searchlight analysis (TFCE-corrected, p < .05). General regions are named based on the approximate location of the cluster. 
Localization of clusters is depicted more precisely in Figure 3A.

parcellation chosen). We transformed the parcellation to each 
participant’s T1w space using the mapping generated by fMRIPrep 
and ANTs. We extracted the patterns of t-values within each 
region to create the neural RDMs. The correlations between the 
neural and model RDMs were then mapped back onto each region. 
To determine if a region encoded centrality or distance at the 
group level, we conducted one-sample one-sided t-tests (ρ > 0) 
within each region in R (Version 3.6.1; R Core Team, 2018). P-values 
were corrected for multiple comparisons across the 200 parcels 
using false discovery rate (FDR) correction.

Results
Neural encoding of degree centrality
Using RSA, we tested if and where two facets of the social network 
position (degree centrality and social distance from others) were 
encoded overall (i.e. across conditions). First, we tested which 
regions encoded network members’ degree centrality (i.e. how 
many friends they had). Results from the searchlight analysis 
show significant encoding of others’ degree centrality bilaterally 
in large swaths of cortex around the temporoparietal junction 
(TPJ), superior parietal lobule, inferior parietal lobule, superior 
temporal gyrus (STG) and middle temporal gyrus (Figure 3A; 
Table 1). We found convergent results using the Schaefer parcel-
lation (Figure 3B; Table 2).

Neural encoding of the social distance
Next, we tested if and where the social distance between net-
work members was encoded. We did not find any significant 
(p < .05) encoding of the distance. However, we did find that 
the overall encoding of targets’ social distances to one another 
was trending (p < .10) in a 520-voxel cluster in the left mid-
dle temporal gyrus [peak value = 4.59, peak coordinates = (−62.5, 
−24.5, −10.5), center of gravity = (−61.2, −24.4, −11.7)] in the 
searchlight analysis (Figure 4A) and, in the parcellation-based 

analysis, in the right medial prefrontal cortex (mPFC) [𝜌 = 0.07, 
t(29) = 3.53, p = .070] and anterior STG [𝜌 = 0.09, t(29) = 3.58, 
p = .070] (Figure 4B). Since none of these results reached signifi-
cance, these findings must be interpreted with caution and future 
research is required to confirm and clarify them.

Effects of contextual relevancy on the encoding 
of social network information
Lastly, we tested if and where contextual goals modulated the 
encoding of centrality. That is, we examined if centrality was 
encoded more when it was relevant than when it was irrelevant. 
In both the searchlight and parcellation analyses, we did not find 
any regions that survived correction for multiple comparisons. 
Similarly, we tested if and where contextual goals modulated the 
encoding of the distance. We did not find any regions that signifi-
cantly encoded the distance more when it was relevant than when 
it was irrelevant.

Discussion
In this study, we tested if and where the human brain encodes 
information about others’ social network positions when that 
information is disassociated from other features that covary with 
it in real-world contexts. Specifically, we tested if and where 
relative degree centrality and social distance were tracked by 
the brain when viewing others’ faces. To decouple these social 
network features from other typically confounding types of infor-
mation (e.g. trait impressions, person knowledge, visual char-
acteristics, familiarity and memories), we taught participants 
a new social network where network members’ identities were 
randomly assigned to positions in the network.

We found that degree centrality was robustly encoded in broad 
regions surrounding the superior and inferior parietal lobules, 
TPJ and superior and middle temporal gyri. That is, the brain 
prioritized information regarding others’ centrality in the social
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Table 2. Parcels that encoded degree centrality

General region Network Index ß t df p

Left posterior parietal cortex Control 61 0.15 4.66 29 .006**

Left premotor cortex Control 70 0.16 4.20 29 .012*

Left posterior parietal cortex Dorsal attention 37 0.11 3.77 29 .019*

Left posterior parietal cortex Control 62 0.15 3.85 29 .019*

Left superior temporal cortex Default 78 0.12 3.57 29 .022*

Right superior frontal cortex Default 196 0.10 3.56 29 .022*

Left lateral occipital cortex Visual 8 0.08 3.50 29 .022*

Left posterior parietal cortex Dorsal attention 34 0.11 3.32 29 .030*

Left posterior parietal cortex Salience/ventral attention 46 0.12 3.28 29 .030*

Left posterior parietal cortex Default 82 0.11 3.22 29 .031*

Left posterior parietal cortex Dorsal attention 36 0.10 3.00 29 .037*

Left dorsolateral prefrontal cortex Default 93 0.11 3.00 29 .037*

Left medial premotor cortex Default 95 0.10 3.04 29 .037*

Right somatomotor cortex Somatomotor 127 0.11 3.02 29 .037*

Right posterior parietal cortex Default 184 0.10 3.09 29 .037*

Left posterior parietal cortex Salience/ventral attention 45 0.10 2.97 29 .037*

Left lateral occipital cortex Dorsal attention 33 0.13 2.93 29 .038*

Left posterior parietal cortex Control 63 0.12 2.87 29 .040*

Right somatomotor cortex Somatomotor 126 0.09 2.88 29 .040*

Right premotor cortex Control 175 0.09 2.80 29 .045*

Left ventrolateral prefrontal cortex Default 85 0.08 2.73 29 .046*

Left dorsomedial prefrontal cortex Default 91 0.10 2.74 29 .046*

Right somatomotor cortex Somatomotor 124 0.09 2.75 29 .046*

Left middle temporal gyrus Dorsal attention 32 0.08 2.57 29 .048*

Left posterior parietal cortex Dorsal attention 35 0.06 2.52 29 .048*

Left ventrolateral prefrontal cortex Salience/ventral attention 50 0.09 2.67 29 .048*

Left dorsolateral prefrontal cortex Control 69 0.09 2.55 29 .048*

Left dorsomedial prefrontal cortex Default 92 0.09 2.53 29 .048*

Left dorsolateral prefrontal cortex Default 94 0.10 2.68 29 .048*

Right somatomotor cortex Somatomotor 125 0.07 2.60 29 .048*

Right somatomotor cortex Somatomotor 128 0.10 2.52 29 .048*

Right somatomotor cortex Somatomotor 130 0.07 2.51 29 .048*

Right posterior parietal cortex Dorsal attention 137 0.10 2.55 29 .048*

Right precuneus Dorsal attention 140 0.09 2.53 29 .048*

Right middle temporal gyrus and superior temporal sulcus Salience/ventral attention 148 0.09 2.62 29 .048*

Right posterior parietal cortex Control 166 0.09 2.52 29 .048*

Right middle temporal gyrus and superior temporal sulcus Default 188 0.09 2.52 29 .048*

Right posterior parietal cortex Control 167 0.08 2.50 29 .049*

Right posterior parietal cortex Dorsal attention 142 0.08 2.48 29 .049*

Right posterior parietal cortex Dorsal attention 139 0.09 2.47 29 .050*

Note. Indices and network names are provided by the database corresponding to the Schaefer et al. (2018) parcellation. General regions are named based on the 
approximate location of parcel. All p-values are corrected for multiple comparisons using FDR-based correction. *p < .05; **p < .01.

Fig. 4. Regions that trended toward encoding the distance between network members. Note that there were no significant regions after correcting for 
multiple comparisons. (A) Results using a searchlight procedure with a four-voxel radius. All p-values from searchlight-based analyses were corrected 
for multiple comparisons using threshold-free cluster enhancement. (B) Results using the 200-region Schaefer parcellation. All P-values from 
parcellation-based analyses were FDR-corrected for multiple comparisons. Only regions that surpass a corrected threshold of p < .1 are shown.

network even though the participant was not directly involved 
in that network and even when other facets of the social net-
work position were more relevant. This suggests that social 

network centrality may be chronically important to monitor. 
Indeed, measures of social network centrality capture the impor-
tance of a person in a social network and can be considered 
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to comprise a facet of social status (Weaverdyck and Parkinson, 
2018; Basyouni and Parkinson, 2022). Here, we found that cen-
trality was encoded in regions that support attentional modu-
lation (Kastner and Ungerleider, 2000; Corbetta and Shulman, 
2002; Uncapher and Wagner, 2009) and social cognitive processes, 
such as understanding others’ mental states (Van Overwalle and 
Baetens, 2009; Tamir et al., 2016; Morelli et al., 2018). Additionally, 
our results overlap significantly with previous findings regarding 
the spontaneous encoding of other’s centrality in their real-world 
social networks (Zerubavel et al., 2015; Parkinson et al., 2017). 
Thus, it may be that social network centrality modulates one’s 
overall attention towards others, because it signals those indi-
viduals’ importance in the community and/or as people who are 
particularly valuable to attend to for ascertaining group norms 
(Paluck and Shepherd, 2012; Basyouni and Parkinson, 2022). This 
may also increase attention to and consideration of high-status 
individuals’ mental states, which could then shape downstream 
thoughts and behaviors. Given the potential implications for 
social influence and reputation management (Weaverdyck and 
Parkinson, 2018), future research should test these possibili-
ties by examining how social network–based status shapes how 
much perceivers attend to others and to what they appear to be
thinking.

While we did not find any significant encoding of the relative 
distance in the network, we found a trend suggesting that allocen-
tric distances may be encoded in aspects of the lateral temporal 
cortex and mPFC. Importantly, previous research has primarily 
focused on if and where the egocentric distance (distance from 
oneself) is encoded in the brain (Zerubavel et al., 2015; Parkinson 
et al., 2017). Here, however, we taught participants a new net-
work and tested the extent to which allocentric distance (distance 
between others) was encoded. Because participants were not 
members of this network, we cannot directly test the extent to 
which egocentric distance was encoded in this controlled set-
ting and are thus unable to directly compare our results to the 
previous literature examining egocentric distance; given that allo-
centric distance is distinct from egocentric distance, its neural 
representation may differ. It could simultaneously be that allo-
centric distance—particularly in a novel network in which one has 
no part—is encoded less robustly than more self-relevant infor-
mation (e.g. egocentric distance), and we were not sufficiently 
powered to detect it in our paradigm. Thus, it is unclear if our 
trending result is due to a lack of effect or a lack of power in our 
sample to detect the encoding of allocentric distance.

One reason to suspect that the trending results in the lateral 
temporal cortex and mPFC are due to a lack of power is that 
these areas overlap with and neighbor regions that are known 
to support person models (Wagner et al., 2012; Hassabis et al., 
2014; Welborn and Lieberman, 2015; Wang et al., 2017). It could 
be, then, that people who are close to each other in the network 
are assumed to be more similar to each other due to phenom-
ena such as homophily (i.e. the tendency for similar others to 
become friends) and social influence (Son et al., 2021; Schwyck 
et al., 2022). This would result in the brain representing more 
proximate individuals in a network as more similar, which is 
consistent with the trending results. Second, there is recent evi-
dence that allocentric distance in one’s real-world social media 
network is encoded in the default mode network, including sim-
ilar regions to those found in the present study, and that allo-
centric distance is encoded distinctly from egocentric distance 
(Peer et al., 2021). Thus, there are several possible reasons why 
the current results differ from previous findings. First, previ-
ous findings studying real-world social networks may partially 

reflect similarity of person knowledge or associated memories. 
Second, egocentric distance might be encoded more robustly than 
allocentric distance because it connotes self-relevance. Finally, 
egocentric and allocentric social distances may be qualitatively 
different types of information that are processed differently in
the brain.

The current study implemented a controlled task in which 
participants learned a new pattern of relationships. This was 
an intentional departure from previous research that used par-
ticipants’ real-world social networks, but where social network 
positions were inextricably linked to other types of social knowl-
edge (e.g. memories) and perception (e.g. visual familiarity and 
face-based trait impressions; Zerubavel et al., 2015; Parkinson et 
al., 2017; Peer et al., 2021). These previous studies along with 
the current research present strong evidence that the human 
brain prioritizes the recall of social network knowledge when 
encountering others.

Future research is needed to replicate these findings and 
extend this work in several ways. In the current study, participants 
were not directly part of the learned social network and the task 
directed people to specific network features. This limited us to 
examining the encoding of allocentric (and not egocentric) social 
distances and may have rendered participants less likely to call 
to mind information about others’ network positions when view-
ing them than they would be in a more personally relevant social 
network. Future research should work to further disentangle how 
egocentric and allocentric distances are encoded, how contex-
tual goals modulate the encoding of social networks in which the 
participant is included and if this information is spontaneously 
encoded (i.e. even when the task does not direct participants’ 
attention towards this information), as previous research sug-
gests (Parkinson et al., 2017). Additionally, future research should 
examine how these facets of social network positions are neurally 
encoded for different types of relationships other than friend-
ships (e.g. kinship and work hierarchies) and how other measures 
of node importance (e.g. eigenvector centrality and betweenness 
centrality) are encoded and used to facilitate inferences about 
other traits (e.g. competence), likely shaping downstream pro-
cesses and behaviors. Finally, it is important to examine if and 
how these phenomena differ across cultures and age groups and 
as a function of other individual differences (e.g. in patients with 
disorders characterized by atypical social functioning). Such stud-
ies (necessitating much larger sample sizes; Marek et al., 2022) 
could focus on understanding how the encoding and application 
of network knowledge differ in perceivers with different social 
cognitive abilities and from different backgrounds. These expan-
sions of the current work would provide valuable insight into how 
the brain represents, uses and integrates information about the 
social networks in which everyone is embedded.

As it has been said time and time again, humans are social ani-
mals. The people with whom we regularly interact do not exist in 
a vacuum, but rather, in the broader context of our social net-
works. As such, our perceptions of others are defined not only 
by our impressions and knowledge of them as individuals but 
also by the patterns of social relationships that surround them. 
Understanding this social structure is impactful in everyday life, 
yet it is not well-understood. It is important to characterize how 
healthy brains support the capacity to learn and represent social 
networks to understand how such social processes may be com-
promised in disorders characterized by deficits in social cognition 
and behavior. One’s ability to learn and process new social net-
work information, and apply it in different contexts, likely has 
serious consequences for downstream behavioral interactions in 
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all aspects of one’s social life. Here, we found evidence that the 
human brain prioritizes specific aspects of social network knowl-
edge that signal the relative importance of others in a community.
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